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ABSTRACT

This paper studies Hamiltonian systems of ordinary differential

equations. The only assumption made on the Hamiltonian is appropriately

rapid growth at infinity. It is proved that for any given period, there

is an unbounded sequence of periodic solutions of the system having the

given period.
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SIGNIFICANCE AND EXPLANATION

Hamiltonian systems of ordinary differential equations model the

motion of a discrete mechanical system. This paper considers a class of

such systems assuming only suitably rapid growth for the Hamiltonian

near infinity. minimax and comparison arguments from the calculus of

variations are then used to show that for any prescribed period, there

exist arbitrarily large solutions of the system having the given period.
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PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS

Paul H. Rabinowitz

Introduction

This paper concerns the existence of periodic solutions of large norm of

the Hamiltonian system

(HS) z JH (z)

dz(where z e dz, Z I 0 I is the identity matrix on

Rn H:2n * R, and Hz  is its gradiant. Let (a,b) j denote the usual inner

product in Rj. The following result was presented in [I]:

Theorem 0.1: Let H E Cl(n,R) and satisfy

(H0 ) There is an r > 0 and P > 2 such that

0 < P H(z)( (z,H zW)R2n

for all Iz1 > r.

Then for all T, R > 0, (HSJ possesses a T periodic solution z(t) with

max Iz(t)I > R.
tE[0,T]

However the proof of Theorem 0.1 given in [1] was not complete. Under

the additional assumption of power growth for H, the result was proved in

[2). Our goal here is to show that Theorem 0. 1 holds as stated. The proof we

give is in the spirit of the argument in [1]. Solutions of (HS) are obtained

as critical points of a corresponding functional IK(z) by minimax argu-

ments. The proof here, however, is more direct avoiding the finite dimen-

sional approximation arguments of [11. Moreover the choice of sets with

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
materiaL is based upon work supported by the National Science Foundation under
Grant No. MCS-8110556.
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respect to which we minimax IK(z) permits a multiplicity theorem for the

corresponding critical values of IK(Z) as well as rather sharp lower bounds

for critical values of a comparison problem. The latter estimates play a

critical role in establishing the unboundedness of the set of solutions of

(HS). The lower bounds given for critical values in [I] are probably too weak

for the argument given there to succeed without a power growth assumption

for H.
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11. The proof of Theorem 0.1.

By rescaling time if necessary we can assume T - 2T. Let z(t)

(p(t),q(t)) with p,q c le and set

A(z) 3 f2 (p(t),q(t)) dt,
0 sn

the so-called action integral. The basic idea we use in trying to find

periodic solutions of (HS) is to obtain them as critical points of the

corresponding functional

(1.1) I(z) = A(z) - f2 WH(z)dt
0

defined on the class of 21 periodic functions under a suitable norm. The

form of A(z) suggests working in E (I'2 2(SIl))2n, the space of 2n

tuples of 2w periodic functions which possess a square integrable

derivative of order 1/2 (See [3]). Unfortunately the H term in I is not

necessarily smooth enough for our later purposes nor is I appropriately

compact (i.e. I does not satisfy the Palais-Smale condition). Thus

following [3] or [4], we truncate H by taking X.(s) c C (R,R) such that

XK (s) - 1 for s 4 Ki - 0 for s ) K+I; and Xl (s) < 0 for s E(KK+I)

and setting
(1.2) H Kz) X K (Iz) H(z) + (1 - XK (Izl)) r KIzI4

where r. satisfies

IH(z)I
r K max4

0 1zI'K+1 Izl

With this choice of rK, it is easy to verify that H. satisfies (H0) with

4 replaced by U min(P,4). Integrating (H0 ) then shows that

(1.3) H Kz) ) a 1 zIU - a2
R2n

for all z c R with a,,a2 independent of K.
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Let C+,E-,E 0  denote respectively the subspaces of E on which A(z}

is positive definite, negative definite, and null. A basis for these spaces

can be written down explicitly, e.g. if e1,'O',e2n denote the usual

orthonormal basis in R2n', set

Vjk = (sin jt)e k - (cos jt)ek+ n

*jk = (cos Jtlek + (sin Jtlek+n

ejk = (sin Jt)ek + (cos jt)ek+n

#k - (cos Jt)ek - (sin Jt)ek+n.

Then

e+ = span( jk,*JkI j E , 1 4 k < n)

E- = span{kC jk IJ c 3, 1 • k 4 n)

E0 = span{POk,lIDk1l 4 k < n)

and E=E+ E- E0. Thus for z c E, z = z+ + z- + z0 e C X 2 - 0 0  and

we will take as norm for E

(1.4) 1z12 = A(z - A(z-) + Iz0 = Iz+ 2 + Iz- 2 + z0 2

It is easy to verify that this norm makes E a Hilbert space and E+ , E-,

E0  are orthogonal subspaces of E with respect to the inner product

associated with 1.41 as well as with the L2  inner product. Noreover

(1.5) IK(Zl ' A(z) - fIHK(z)dt
0

belonqs to CI(E,R). (See [311.

We will show that IK(z) possesses an unbounded sequence of critical

points which for appropriately chosen K are also critical points of 1. This

will he done by minimaxing 1. over certain families of sets r. To showJ

the minimax values cj(YK) produced in this fashion are indeed critical values

Of 1K requires sufficiently sharp lower bounds for c3(KI. These lower

bounds are obtained by ininimaAing a comparlson functional. Rather than pause

now to, introduce all of the tir)perties required for the coiparison problem, we

-4-mm



will simply assume there is an M E C2( , ) such that

(MI ) For all K > 0, M has a truncation KK E C2 (3,1) such that

M(s) K M(s) for s < K,

(m2) KK(Ijz) ) HK(z) for all z c R2 n

and
- 2:

(1.6) K (z) A(z} f 2K (z)dto

satisfies 3 K E CI(ER). We will make further assumptions concerning K

and ?K  as necessary. Then we will conclude the proof of Theorem 0.1 by

constructing K and K  having the desired properties. Note that (m,)

2n
and (m2 ) imply M(IzI) ) H(z) for all z E R and (1.61 and (m2 ) show

k(z) < I K (z) for all z E R.

The minimax procedure we will use takes advantage of an S invariance

1
possessed by 1K and I. For z e E and 8 E [0,2w] - S , set

(1.7) (Toz)(t) = z(t + 8).

Then for fixed z e 9, ITeze 2' IK(TOz), and JK(Toz) remain unchanged as
L

0 varies. We call a subset B of E an invariant set (under (T } or

Si, if for all z E B, Tez E B for all 9 E [0,2w]. If B is an invariant

set, we say h E C(B,E) is an equivariant map if h(T0z) = T h(z) for all

e c (0,2w] and z E B. Note that the fixed point set of this group of

symmetries,

0(1.8) Fix [T 1 (z r EIT 01 z for all 8 e [0,21]) = E

Let E denote the family of closed invariant subsets of E\(0). In [51, an

index theory defined on E was introduced and we shall use it below. The

properties we need are summarized in the following result:
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Lemma 1.9: There is an index theory, i.e. a mapping i:E * N u 1-} such that

if B, 1 c E,

I6 i(B) 4 i(E) if there is a s E C(B,B I ) with 0 equivariant

2* i(B U B I) 1 (B) + i(B1 )

30 If B C E\g0 and B is compact, i(B) < D and there is a 6 0

such that i(N6 (B)) = i(B) where N6 (B) - {x c ElIx - BI 4 6).

40 If S c E\E 0  is a 2n dimensional invariant sphere, i(S) - n.

With these preliminaries in hand, several families of sets can be

introduced. For m c V, let

(1.10) V - span{Pjk ,jkti I [m/nI, k ' m - nj E- E

where [a] denotes the greatest integer in a. Then V is an invariant
In

subspace of E By (1.3) and the H51der inequality,

(1.11)J (Z) 4 I (Z) 4 |z+| 2 _ a3 |z|I + 2a a 4 C |+i2 _ a |z+ A
- + 2lra

L2  3 L2

Since V. n E+  is m dimensional and -P > 2, (1.11) shows there is an R. >

0 and independent of K such that

(1.12) IX (z) 4 -2NM(O)

for all z E VM  such that IzI > R I Let BR  denote the closed ball of

radius R in E centered about 0. Set D. % m n Vm . Then Dm is an

invariant set. Let P denote the orthogonal projector of E onto E-.

Let G. denote the class of mappings h r C(D,,E) which satisfy the

following properties;

(gl) h is equivariant

0
(g2) h(z) - z for z c (3 n V ) U E

m
(g3) P h(z) - a(z)z + *(z) where O(z) is compact and

0 E C(DM,[,al), a depending on h.

Since h(z) = z e G. for all I E N, G I n .
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Finally for 3 e U, define

(1.13 rj . (h(D \Ylm > J, h c G, Y E, and i(Y) ( t-J).

This class of sets resembles somewhat a class used in 15]. We will minimax

IK and J. over this class. First we briefly study r :

Lemma 1.14: The classes r i possess the following properties:

10 (Monotonicit): r J+1 r i

20 (Excision): If B c r and Z F E with i(Z) < s < J, then

\ J-s

30 (Invariance): If V E C(E,Bl and satisfies (g1l, (g3) and (92)

for all m > J, then B E r implies (B) E r .

Proof: The definition of r. implies 10. To prove 20, let
:3

B h(D \Y) Er * We claim

(1.15) B\Z = h(D \(Y U hl (Z))).U

Assuming this for the moment, since h c Gm, Y u h1 l(Z) E E. Hence by 20 and

10 of Lemma 1.9,

i(Y U h- (Z)) < i(Y) + i(h I(z)) < i(Y + i(Z < M - (J-s.

Thus B\Z E rJ-9 To verify (1.15), note first that b E h(D* \ (Y U

h 1(Z})) 4mplies b E h(Dm\Y)\Z c B\Z, i.e.

S(1.161 h(D\ (Y u hl (z)) c B"Z.

Similarly,

(1.17) S\Z c h(Dm\(Y U h- 1( MI

so combining (1.16)-(1.17) yields (1.15). Lastly to get 3, again let

B - h(D \Y) E r It is straightforward to show thatM J,
V(S) c (h( \ Y) c AB)S.

Therefore

(1.18) V(- ) 0(h(-- - r'a 3

since 0 0 h c Gm.
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The next result which is based on related intersection theorems in [61 is

crucial for our later estimates.

Proposition 1.19:. Let h E Gm, j 4 m, P < Rm, and

I
0= (z c D h(z) E 3B n V.I

m P j-

Then 0 is compact and i(O) 4 m-j+1.

Proof: Due to the way in which it is defined, 0 is closed and invariant.
Since h(e0 1  E0  C V via (g and 0 O n E a E . To see that

0 is compact, let (z.) he a sequence in 0 . Since Dm is bounded, by
1

restricting to a subsequence if necessary, we can z. converges weakly to

some z E E, i.e. z. ' z. Since Dm is closed and convex, it is weaklyI

= Z 0+ - 0
closed so z z +  z- + z E Dmo Writing zi = z +z.- + z, we can assume

+ 0 + 0 +
z.,z. + z ,z since R? and V n E are finite dimensional subspaces of

X. Moreover by (q3)

(1.20) P h(z.J a a(zi)z i + O(z.J

where 1 < a(z i a, a depending on h, and i is compact. Thus
1

z7 --(z.) I(z. )

so z7 and hence z, has a strongly convergent subsequence. Consequently1 1

3 is compact and by 30 of Lemma 1.9, i(0) < 0 and there is a 6 > 0 such

that

(1.21) 1101 i(N6 (0))

To estimate i(O), .3 finite dimensional approximation argument will be

used. Let

Ek = span(iP ,0 a 4 k, 1 L 2n)

and let Pk denote the orthogonal projector of E onto Ek . Thus Ek is an

invariant subspace of E, Pkh f C(PkDmEk is equivariant, and for

k > m, P kh(z) z F-r z E 0u (3BR n V Ek ). Therefore (Pkh) - I (Bp n Ek

is a closed invirLant neiqhborhood of 0 in V, n Ek . Let 2 denote the
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component of (Pkh)-I(Bp n Ek) which contains 0. Then 0 is contained in

the interior of B m n Vm n Ek . Let P denote the orthogonal projector of

Vm n Ek  onto V_ n Rk . Thus f P P h e C(n,V_ n E ), is equivariant,
jk j-1 kL0

and f(z) = z for z c E0 n . But then f,9 satisfy the hypotheses of

Theorem 2.3 of [6] which guarantees that

(1.22) i(f (0) n a ) ; m-j+).
i

At zeroes of f on 3., we have Pkh(z) c 3B n Vj_ . Thus (1.22) and 10

of Lemma 1.9 imply

k (z E Dm Pkh E 3Bp n Vj- I

satisfies
(1.23) i(O k  ) m-j+).

We claim 0k C N6 (0) for all large k. The completion of the proof is

then immediate via I* of Lemma 1.9, (1.23), and (1.21). Arguing indirectly,

if 0 k $ N5 (O) for all large k, then there is a sequence of k's + m for
+ - 0

which z. c Ok but z. N, ( O) . Writing zk = zk + zk + z k , as above we
+ 0

can assume z z  converge and

PP kh(zk a(Zk )z + P k4'z k 0.

This implies zk  also converges so z C D * Moreover since

(1.24) 1h(z) - Pk h(z kI Ih(z)- P kh(z)I +P k(h(z) - h(z k)) * 0

as k * 0 and Pkh(Zk) SB n v _ it follows that z E 0. On the other

(zk F 3P i-Ir

hand z I N6/ 2 (0), a contradiction. Thus 0k c N6(0) for large k and the

proposition is proved.

Corollary 1.25: Under the hypotheses of Proposition 1.19, if Y E E,

i(Y) ( m-J and W - O\Y, then

(1.26) h(O \Y n 3B n V h(W *
m P -

Proof: W Ls cognpact an4
1

h(W) c h(D \Y) 0 n 3B _nV
m P -

-9-
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Hence by 10 and 20 of Lemma 1.9 and Proposition 1.19,

(1.27) i(h(D m\Y)) n 3 B n V ) i(h(WJ) > i(W) ) i(O) - i(Y) ) 1

so (1.26) follows.

Having completed the above preliminaries, we can now define a sequence of

minimax values for IK and JK. Let

(1.28) c (K) = inf sup I K(z),
BEr. zEB

3

(1.29) b.(K) = inf sup J (Z).
3 BCF. zsB

By (1.11) we have

(1.30) c (K) > b.(K), j c R, K +

and by 10 of Lemma 1.14, we see that

(1.31) c (K) > c (K); b (K) > b (K) b lK)

J1 J+1 b 1(K

An estimate for b1 (K) will be needed later. Set

M(s) H(s) - M(O); K (s) = MK (s) - M(0).

We assume that

(m3 ) i(s) = o(s at s = 0

and

(m4 )  K(S) is strictly monotonically increasing in s and tends to

as s + 10

Let

SK(z) A(z) - r MK(z)dt'0

Then

(1.32) b (K) inf sup JK(z) - 21M(0) I b.(K) - 27IM(0).
j B J Z B

Lemma 1.33: b (K) > 0.

Proof: Since ;(s) o(s 2 ) at a = 0, by Lemma 3.35 of [31,

(1.34) k 74(z)dt -o (zI 2 ) at z - 0.I 0 0

-10-



Let B r so B h(D Y) for some h c "m' m ) 1, Y E E and1 m
J~+

icy) r Since V0 = E , by Corollary 1.25 with j = I, for any

P < R., there is a z E D \Y such that h(i) E 3B n E o Hence

rnm PHec

sup (Z K(h~ l)K --- _ f2K kh(ht-=t
B 0

= P2 _ j2l ,nk(h(z))dt.

0
By (1.34), P = P(K) 4 R can be chosen so that

f 21 A.(z) dt 4 1/2 z2

0

for 1z 4 P. Therefore

(1.35) sup 3kz > p2 1/2p2 ,1/p2

Since B Cr 1  was arbitrary, (1.35) shows bI(K) ) /2p2 > 0 where P = 0(K).

Our next goal is to prove that the minimax values b.(K) are critical
3

values of J " This requires a variant of a standard "Deformation Theorem*.
k

Let Y C (R2nR) and for some constants s, l '2 ) 0 satisfy

111(z) 1 4 lIzI s  + a 2

for all z c R2n . Then

f2'y(z)dt and *(z) = A(z) -f 2 l (zlt
o o

belong to CI(E,R) - see [3]. We say * satisfies the Palais-Smale condition

(PS) if whenever (i) O(z ) is uni~ormly bounded and (ii) t'(z ) + 0,

then (zm) possesses a convergent subsecuence. Let K -- {z EI$(z) = cc

and 0'(z) = 0) and A = {z E (z) 4 C).c

Lemma 1.36: Let T be as above with C (E,R). if aso satisfies

(PS), then for any c c R, C > 0, and invariant neighborhood 0 of K ,

there is an c E (0,C) and rl E C([0,1j x E,E) such that

10 (t,o) is equivariant for all t c 10,11

20 n(t,') is a homeomorphism of E onto E for aLl t c [0,11

3e n(o,z) z

-11-
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4o n(t,z) z if O(z) I [c-Z,c+Zi

5o n(1,A 9) c A

60 If Kc = 0, r(1,A c+C c A c-

70 PTI(1,z) satisfies (g3 )o

Proof: The result without assertions 10 and 70 is well known - see e.g.

[7] or [8]. Moreover given an equivariant pseudogradiant vector field V(z)

for 0'(z), 10 also follows via the proof of [81. The existence of such

a V(z) of the form V(z) = A'(z) + P(z) with P compact is given e.g. in

[9]. Lastly 70 follows since P n(t,z) is determined as the solution of the

initial value problem for the ordinary differential equation:

(1.37) d = -O(n) P-(A'(n) + P(n))

P-n(O,z) = P-z = z-

where 8 is a scalar function with 0 0 8 1. Since P A'(n) =-2P n,

P-n(t,z) - z exp ft 2J(n(s,zllds
0

(1.38)

+ ft (exp ft 2(n(s,zflds)P(nlT,z))dT.
0 0

Hence P n(t,z) has the form (g3).

Remark 1.39: Due to the form of the truncation involved, IK E CI(E,R) and

as we shall see later, JK' 3K (ER). Moreover this form implies IK'

JK' JX satisfy (PS) - see [31. Xctually [31 only proves any sequence

(Z.) satisfying (i) and (ii) (for IK' JK' or JK) is bounded.

Therefore zm converges weakly in R and z0 converges strongly in Em

(along some subsequence). Since Pto'(z) = z + Pk Pz) with P compact -

see [31 - (ii) and the weak convergence of zi imply the strong convergence
m

of z and hence (P).m

-12-



Now we are in a position to establish that the b.(KJ's are critical

values of JK

Lemma 1.40:

10 G:+ (K) 9 ::(K)

2' b (K) is a critical value of J

30 Any critical points of JK corresponding to bK(K) lie in E\E 0

4" If b+(K) ..... b,(K) - b and K - (j)-1(0) n J-tb), then

i(K) ) 1.

Proof: Statement 10 follows from (1.31) and (1.32). To prove 20, it

suffices to prove the stronger multiplicity assertion 40. Note first that

since JK satisfies (PS), K is compact. For z E E0, JK < 0 via (N )

and the definition of MK. Moreover by 10 of this lemma and Lemma 1.33,
b> ( bl(K 2p2(K) > 0. Hence K n E0 = * and 30 follows. Now by 30

of Lemma 1.9 there is a 6 > 0 such that i(N6 (K)} - i(K). Suppose

S - - p2
i(K) 4 t-io We invoke Lemma 1.36 with 0 - jK c = b, i- 1/4P (K), and

0 . N6(K). Thus there is an C E (0,i) and n E C([0,1] x ,E) satisfying

10-70 of Lemma 1.36. Choose B E r,+, such that

(1.41) sup 3 K b +C
B

By 20 of Lemma 1.14, B\ r1  4 . The definition of Rm- see (1.12) -

implies that J (Z) = J (z) + 2WM(0) 4 0 for z c 3B n V . As was noted
K K R m

above J € 0 on E0. Thus by 40 of Lemma 1.36, (1,z) - z for
K

z E E u(9BR n V M for all m e V and n(1,z) satisfies (g2). Moreover
m

1' and 70 of Lemma 1.36 imply n(1,z) satisfies (g) and (g3). Hence

n(1,z) E G for all M E W. Consequently by 30 of Lemma 1.14,a

Q ---(1,B) ~ j+l. Note that Q n (1,B\) via 20 of Lemma 1.36. Thus

by the defInItion of b (K)3,
J+1

~-13-
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(1.42) sup JK ) b
Q

while by (1.41) and 50 of Lemma 1.36

(1.43) sup J b-C,
Q

a contradiction. Thus the Lemma is proved.

Next we will make a closer study of the critical values b.(K) of J

Let z - (p,q) be a corresponding critical point. Then - see e.g. [3] - z

is a classical solution of

( = -3qMK(Iz(tJI) = (Yz(t)l) 7
1.44)

q = yMK(,z(t)I) = M} (z(tII)

Condition (m3 ) guarantees that there are no problems with the right hand side

of (1.44) if z(t0 ) = 0. Since (1.44) is a Hamiltonian system, 14K(Iz(tll)

is independent of t. Therefore by (m4 ), Iz(t)I must be constant and nonzero

since b.(k) ) b1 (K) > 0. Differentiating (1.44) then yields

M'(Iz(t)l) "i(lZl)

IzI q "Iz p

with q satisfying the same equation. We know exactly what all solutions of

(1.45) are and in order for them to be 2W periodic, it must be the case that

(1.46) v(I)
Izi

for some k E N. Then p,g have the form

p(t) = a cos kt + 8 sin kt
(1.47)

q(t) sin kt - cos kt

where a,$ c le and Iz(t)j 2 . a2 + 2. Thus for each k c U, we get a 2n-I

dimensional sphere Sk in E (or L2 ) of solutions of (1.44). Since S is

also an invariant set and lies in E\E0 , by 40 of Lemma 1.9, i(S} = n.

-14-
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Suppose that

(m5) M K (a) a is strictly monotone and tends to infinity as s .

Then (1.46) shows that Iz(t)I is a monotone increasing function of k which

goes to infinity as k + . The critkcal value of 3 corresponding to any

z E Sk is

(Z) -20 (p,q) an " K(z dt

(1.48)

= 21t( 1/21 z 1 M1YIz) - NK(1zl)).

Thus if KK satisfies

(m6) 1/2s MK{s) - NK(s} is strictly monotone increasing in a

then on the set of its critical points, 3K is a monotone function of IzlKL
and via (m5) of k.

Lemaa 1.49: b (K) > JKIs where k [J/nI.

Proof: This follows by combining our above observations. By 1* of Lemma

1.40, the critical values b (K) form a nondecreasing sequence in j and by 4,

a multiple critical value of "multiplicity* I has a cocresponding set of

critical points of index at least 1. 411 critical points of 3 are of the

form (1.47) and combine in families Sk  o# index n. kll z E Sk  have

Iz(t) = constant '- k with Yk independent of z and by (m5), Tk is a

monotonically increasing function of k. Moreover by (m6) and (mS)

aisa 1th
K1.S k k also is a monotonically increasing function of k. Thus the j

minimax value h-(K) must come from family k where k ; tj/n- k.

-15-
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Corollary 1.50: If MK satisfies

(m7 ) 1/2s i4 (s) 0MK(s) where 0 > 1,

then

-- 1(1.51) 3wO1 'KMY (k)) + as k +
KIS n

Proof: By (1.45) and (m7 ), for z E %,

K (z) > 2w(-1)M K(Yk)

so the result follows from (1.46) and (%).

Remark 1.52: Note that from (1.51) for any k, by choosing K(k)

sufficiently large, we have (M I(k}) = M(M '(kI) independently of K.
K K

With the aid of the lower bounds established above for b (K) and

therefore bj(K), we will study the minimax values cj(K).

Lemma 1.53: If cj(K) > 2a 2 ,

(i Cj(K) is a critical value of I.-

(ii) hny corresponding critical point lies in !\E0.

(iii) If cj+ 1(K) . cj+t(Ki c > 2wa 2 ,

i(I,(Ci f (In -(0) ) 2.

KI
Proof: Note that

sup I = 211 sup (-HK(Z)) < 2w sup (a2 - a Iz}
E 0  E 0  K 0  2

via (1.3). Thus if c (K) > 2wa 2, an argument paralleling that of Lemma 1.40

yields (i)-(iii) above. We ill omit the details.
Remark 1.54: Since c (K) > b (K) + 0 as J * 0 via Lemma i.49, (1.51) and

the definition of b (X), the requirement that cM(K) > 2ra is satisfied

for all large J, say j > j0(<). Moreover Remhark 1.52 shows jo can be
chosen independently if K for K suitably large, say K X 0. For what

foillows we restrict o.irgelves to K ) K



The next two lemmas provide K independent bounds for cj(K) and

corresponding critical points zj(X}.

Lemma 1.55: For j 1 JO there is a constant d1  independent of K such

that c (K) 4 d .

Proof: Choosing h(z) - z and Y i * in the definition of r we seeI

B - D E r Hence by (1.28) and our choice of J,

(1.56) 0 < c (K) IC sup I K(z.
D

Let z E Di such that IK(z) ) 0. Since Dj c Vi,

(1.57) A(z} ( Iz 2 C Jlz1 2
L2

On the other hand, by (1.56) and (1.3),

(1.58) A(z) ) f2w HK(z)dt ) a, f2l izldt - 2 a2 ) a3( f2w iz+2)i;/2 _ 21a
0 0 0

where a3  is independent of K and 0 > 2. Consequently (1.57)-(1.581

+ +
successively imply K independent bounds for Iz I and Iz 1. Hence by

L2
(1.3) again,

I K(Z) IZ+N 2 + 21'a2

which is bounded from above by a constant d independent of K and any such

z E PJ, The lemma now follows from (1.56).

Lemma 1.59: Let z(K) be a critical point of 1K with critical value

c1(KI. Then there is a constant 5 independent of K such that

z (K)I C 6
L

Proof: For notational convenience we will drop the K when referring to

zM(K). Since I'(z )z 0, by (H 0  (for H.),

-17-
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c.(K) IK(zj) -1/2 I<(z )z.

(1.60) =f 2 ,0 1/ 2 (z HZ(z .2 - HK(z j )idt

) (2-1 _ 1 ) 0 (z S'.(z.)) 2 dt - a4 .
0 1 ~ jR~n 4

where a4  is a constant independent of K. Then !1.60) and Lemma 1.55 yield

a K independent upper bound for

I(z , z)
j Kxz j V,-'

Next observe that by (H0 ) again and the f t "t.-at z. is a solution of a

Hamiltonian system, we have

(1.61) 211HK (zj) = X H (z )dt ; 7 ijHKzZ )) R2n1 + a
0 K L1  a

where a5  is a K-independent constant. Thus HK(zj) and therefore by

(1.3) are bounded in L independently of K. Hence the Lemma.

Modulo the construction of H and M., we can now complete the:

Proof of Theorem 0.1: It suffices to show that I(z) has an unbounded

sequence of critical values cj. Indeed if z is a critical value of 1, as

in (1.60) we have

(1.62) 1(z) 1/ 2 (ZHz(z))2n - H(z)dt

so if the set of critical points of I were bounded in L , the

corresponding set of critical values also would be boundel via(1.62).

"iFor each j > J0, choose K i > max(SN-1(J)). Let zi -- (sK i be a

1" critical point of 1. with critical value cj(Xj). Sy Lemma 1.59,

Z I < Hence by our choice of K Hr =(z H(z.) and HKzjL - j" 3 Kz

H (zj). Consequently zj is a solution of (HS) and a critical point of I

with critical value c, = c (K I via (1.62). By (1.30), (1.32), (1.51),I ii
Remark 1.52, and our choice of Kj,

-18-



IK j(z - j(K > (Kk ) - 21rM(O)

(1.63)

21(0-1)A(M- (j) - 2wM(O) + 0 as j + 
-.

Hence c + as J + 0.

j

It remains to construct the functions M(s) and K1K(s) satisfying (ol}-

(m7). To begin, choose 'P(z) such that

(a) 'P(s) = 0 + a1
s 4  for 8 c 10,I] where a0 • 28 max jH(z)I

(b) pIsl 2 5  max ICz)l I1S

Iz1 s+1Cc) ' E C2  and 'P'(s), P"(S) > 0 if s > 0.

'P~s)Set M(s) . e Then with the aid of (a), (b), (c) ve have:

(a') M E C2  and M'(s), M"(s) > 0 if 5 > 0

(b') M(s) > SP(s)

(c') s M"(s) > 3 M'(s) for s > 0.

These facts and simple computations imply:

i) ;(s) = M(s) - M(0) = o(s 2 ) at s = 0

(ii) M( z ) H(z)I for all z E R2n

(iii) M(s), M(s) - A(s) K'(s) - i(s) are strictly monotonicallys '2

increasing

(iv) 1/2s i'(s) > 24(s) for all s ) 0.

Define 4(s) M(s) for s 4 K and for s > K

14(s) = M(K) + M'(K)(s-K) + 2i-- (s-K)2 + P1
(s-K)4

K2

We can assume K > 1. Then MK ' C2  and satisfies (ml) and (,a3). Moreover

(1.64) s M" (s) > 3 M'(s)
K K

for s c [K,K + C K for some £K > 0 via (c' above. Therefore by choosing

P I(K) sufficiently large, (1.64) holds for all s > K. This fact and

(iii) - (iv) quickly yield (m4)-(m7). Lastly to verify (m2 ), i.e.

K (Ciz) IHK (z)I, note that this is true for Izi 4 K via (ii). For

izi > K+1, comparing MK and HK shows the desired inequality holds if

-19-



4.

P (K) Rr K (1+K4}. Lastly for K < Izi < K+I, by the definition of

44
IH k (z) IH(z)j + r K(K+1)4<

max IH( ;I + max (K+I)

K< I€C I <,+l CK' IK+l I14

[1 + max IH(}I ( M(K) ( M(IzH.
K IC14K+1

The proof of Theorem 0.1 is complete.

-20-
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